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Fifty  years  ago,  the  legendary  Professor  Takeru  Higuchi  published  the  derivation  of  an  equation  that
allowed  for the quantification  of  drug  release  from  thin  ointment  films,  containing  finely  dispersed  drug
into  a perfect  sink. This  became  the  famous  Higuchi  equation  whose  fiftieth  anniversary  we  celebrate
this  year.  Despite  the  complexity  of  the  involved  mass  transport  processes,  Higuchi  derived  a very  simple
equation,  which  is  easy  to  use.  Based  on  a  pseudo-steady-state  approach,  a  direct  proportionality  between
the cumulative  amount  of  drug  released  and  the square  root  of  time  can  be  demonstrated.  In contrast
to  various  other  “square  root  of  time”  release  kinetics,  the  constant  of  proportionality  in  the  classical
odeling
iffusion
ontrolled drug release
rug release mechanism

Higuchi  equation  has  a  specific,  physically  realistic  meaning.  The  major  benefits  of  this  equation  include
the  possibility  to: (i)  facilitate  device  optimization,  and  (ii)  to better  understand  the  underlying  drug
release  mechanisms.  The  equation  can  also  be  applied  to  other  types  of  drug  delivery  systems  than  thin
ointment  films,  e.g.,  controlled  release  transdermal  patches  or films  for  oral  controlled  drug  delivery.
Later,  the  equation  was  extended  to  other  geometries  and  related  theories  have  been  proposed.  The aim

of this  review  is  to highlight  the  assumptions  the  derivation  of  the  classical  Higuchi  equation  is  based  on
and  to  give  an  overview  on  the use  and  potential  misuse  of this  equation  as  well  as of related  theories.

© 2011 Elsevier B.V. All rights reserved.
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. Introduction

One of the most important and challenging areas in the drug

in their utility during both the design stage of a pharmaceutical
formulation and the experimental verification of a release mecha-
nism (Peppas, 1984a,b; Harland et al., 1988a; Siepmann et al., 2006;
Siepmann and Siepmann, 2008).
elivery field is to predict the release of the active agent as a

unction of time using both simple and sophisticated mathemat-
cal models (Gurny et al., 1982; Korsmeyer and Peppas, 1983a;
orsmeyer et al., 1983; Peppas, 1983; Peppas and Franson, 1983;
ranson and Peppas, 1983). The importance of such models lies

∗ Corresponding author at: Univ. Lille Nord de France, College of Pharmacy,
NSERM U 1008, 3 Rue du Professeur Laguesse, 59006 Lille, France.
el.: +33 3 20964708; fax: +33 3 20964942.

E-mail address: juergen.siepmann@univ-lille2.fr (J. Siepmann).

378-5173/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijpharm.2011.03.051
In order to identify a particular release mechanism, experimen-
tal data of statistical significance are compared to a solution of the
theoretical model. It is therefore clear that only a combination of
accurate and precise data with models accurately depicting the
physical situation will provide an insight into the actual mecha-
nism of release (Korsmeyer and Peppas, 1983b; Peppas, 1984c,d;

Lustig and Peppas, 1985; Siepmann and Peppas, 2000).

The vast majority of theoretical models is based on diffusion
equations (Ritger and Peppas, 1987a,b; Siepmann and Peppas,
2001; Siepmann and Goepferich, 2001). The phenomenon of

dx.doi.org/10.1016/j.ijpharm.2011.03.051
http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:juergen.siepmann@univ-lille2.fr
dx.doi.org/10.1016/j.ijpharm.2011.03.051
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Fig. 1. Schematic presentation of the drug concentration–distance-profile within
the  ointment base after exposure to perfect sink conditions at time t (solid line) and
at  time t + dt (dashed line). The variables have the following meanings: cini and cs

denote the initial drug concentration and drug solubility, respectively; h represents
the  distance of the front, which separates ointment free of non-dissolved drug excess
J. Siepmann, N.A. Peppas / Internationa

iffusion is intimately connected to the structure of the material
hrough which the diffusion takes place thus the morphology of the
olymeric materials should be accounted for in a successful model
Peppas and Gurny, 1983; Franson and Peppas, 1983; Gurny et al.,
983; Lustig and Peppas, 1984; Harland et al., 1988b; Peppas and
ahlin, 1989). There has been a limited number of reviews that have
ddressed these aspects of controlled release formulations. The
echanisms of drug release offer a convenient way to categorize

ontrolled release systems into: (i) diffusion-controlled (Peppas
nd Lustig, 1985; Peppas and Segot-Chicq, 1985); (ii) swelling-
ontrolled (Korsmeyer et al., 1982; Peppas et al., 1984; Davidson
nd Peppas, 1984, 1985; Peppas, 1987); and (iii) chemically con-
rolled.

While the Higuchi equation addressed important aspects of drug
ransport and release from planar devices, it has been misinter-
reted and misused in many occasions. It is instructive to return
o the original derivation and examine how Higuchi’s and other
popular” release equations were developed.

. Derivation of the Higuchi equation

In his seminal contribution Takeru Higuchi considered the
elease of a drug from a thin ointment film into the skin (Higuchi,
961). He considered the following conditions:

1) Drug transport through the ointment base is rate limiting,
whereas drug transport within the skin is rapid.

2) The skin acts like a “perfect sink”: The drug concentration in
this compartment can be considered to be negligible.

3) The initial drug concentration in the film is much higher than
the solubility of the drug in the ointment base.

4) The drug is finely dispersed within the ointment base (the size
of the drug particles is much smaller than the thickness of the
film).

5) The drug is initially homogeneously distributed throughout the
film.

6) The dissolution of drug particles within the ointment base is
rapid compared to the diffusion of dissolved drug molecules
within the ointment base.

7) The diffusion coefficient of the drug within the ointment base
is constant and does not depend on time or the position within
the film.

8) Edge effects are negligible: The surface of the ointment film
exposed to the skin is large compared to its thickness. The math-
ematical description of drug diffusion can be restricted to one
dimension.

9) The medium (ointment base) does not swell or dissolve during
drug release.

Under these conditions, Higuchi could derive his surprisingly
imple equation, allowing for the quantification of drug release
rom this rather complex type of drug delivery system. The basic
deas of the derivation of this famous equation are detailed in the
ollowing.

Upon exposure to perfect sink conditions, drug molecules dis-
olved in the ointment base diffuse into the skin. Initially, this
ccurs only close to the surface of the ointment film. Since drug
issolution is rapid and a large excess of drug is provided, the
olecules that leach out of the system are rapidly replaced by the

partial) dissolution of non-dissolved drug particles located in this

egion. Thus, the concentration of dissolved drug molecules within
he ointment base remains constant as long as non-dissolved drug
xcess is provided (saturated solution). Only when all drug parti-
les located in the region next to the surface are finally dissolved,
he concentration of dissolved drug molecules in this region falls
from ointment still containing non-dissolved drug excess, from the “ointment-skin”
interface at time t; dh is the distance this front moves inwards during the time
interval dt.

below saturation concentration. Due to concentration gradients
subsequently also dissolved drug molecules located further away
from the film’s surface diffuse through the ointment base into the
skin. Importantly, the concentration of dissolved drug molecules
in this newly concerned region remains constant (saturation con-
centration) as long as non-dissolved drug excess is provided in that
region.

After a given time t, the drug concentration–distance-profile
represented by the solid line in Fig. 1 is obtained in the ointment
film. On the y-axis, the drug concentration is plotted, on the x-axis
the distance. The diagram can be seen as a cross-section through
the ointment film and the skin (located on the right hand side and
providing perfect sink conditions). Note that only for visibility rea-
sons the illustrated drug solubility, cs, is relatively high compared
to the initial drug concentration cini. Ideally, cini should be much
larger than cs (by a factor of 10 or more). As it can be seen, parts of
the ointment have been depleted of drug at this time point (illus-
trated by the dotted area). At a certain distance from the surface
a sharp front can be observed, at which the drug concentration
steeply increases from saturation concentration to “initial concen-
tration”. This front separates the part of the ointment, which still
contains non-dissolved drug particles (left hand side) and the part
of the ointment, which is free of non-dissolved drug excess (right
hand side). This front is located at the distance h from the film’s sur-
face and is sometimes called “diffusion front”. In order to be able
to calculate the amount of drug released from the ointment film
at this time point t, the drug concentration–distance-profile within
the part of the ointment depleted of drug excess must be known.

In order to describe the drug concentration gradient in the oint-
ment zone located between the “diffusion front” and the skin,
Higuchi used a pseudo-steady-state approach, which is valid for sys-
tems containing initially a large excess of drug (drug loading � drug
solubility). The idea is the following: If the initial drug concen-
tration is much higher than drug solubility in the ointment base
(ideally, by factor 10 or more), it takes a long time to dissolve all
drug excess at the distance h from the film’s surface. Thus, the
concentration at this position can be considered constant during
a certain time period. In addition, perfect sink conditions are pro-
vided at the film’s surface. Since the ointment base does not swell or
dissolve, pseudo-steady-state conditions are provided for drug dif-
fusion: a saturated drug solution on the one hand side, perfect sink

on the other hand side and a constant distance in-between. Using
Fick’s second law of diffusion, it can be shown that under these
conditions, the drug concentration–distance-profile between the
surface of the film and the “diffusion front” is linear (solid line in
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Fig. 2. Surfaces indicative for the amounts of drug released from the ointment base
at  time t (dotted trapezoid) and at time t + dt (dashed trapezoid + dotted trapezoid).
The variables have the following meanings: cini and cs denote the initial drug con-
centration and drug solubility, respectively; h represents the distance of the front,
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polymer film or sheet of thickness L where the structure is ini-
hich separates ointment free of non-dissolved drug excess from ointment still con-
aining non-dissolved drug excess, from the “ointment-skin” interface at time t; dh
s  the distance this front moves inwards during the time interval dt.

ig. 1). Consequently, the amount of drug released from the oint-
ent film at time t can be represented by dotted trapezoid in Fig. 1.

t has to be pointed out that under non-pseudo-steady-state con-
itions, the drug concentration gradient in the ointment zone free
f drug excess is not linear and the resulting geometries are much
ore complicated.
Fig. 2 focuses on the dotted trapezoid representing the amount

f drug released from the film at time t. Note that only a cross-
ection of the ointment film is illustrated in Figs. 1 and 2. Thus,
he surface of the dotted trapezoid corresponds to the cumulative
mount of drug released divided by the surface area of the film
xposed to the skin, A. Due to the very simple geometry, it can
asily be shown that the cumulative amount of drug released from
he ointment film at time t, Mt, can be calculated as follows:

Mt

A
= h
(

cini − cs

2

)
(1)

owever, for the use of this equation h must be known. In order to
xpress h as a function of other variables, Takeru Higuchi consid-
red the drug concentration–distance-profile within the ointment
lm a certain time period (dt)  later: at time t + dt.  The dashed line

n Fig. 1 illustrates this situation: The “diffusion front” separating
intment free of drug excess and ointment still containing drug
xcess moved the distance dh away from the surface. Importantly,
he drug concentration gradient between the new front position

 + dh and the skin can again be considered linear, due to the
igh excess of drug (compared to the drug’s solubility) and the
seudo-steady-state approach described above. Consequently, the
umulative amount of drug released per unit surface area dM/A
n the time interval dt can be represented by the dashed trapezoid
llustrated in Fig. 2. Again, due to the given, very simple geometries,
t can easily be shown that:

dM

A
= cinidh − cs

2
dh (2)
In addition, Fick’s 1st law of diffusion (Fick, 1855) can be used in
rder to quantify the amount of drug released from the ointment
lm in the time interval dt (considering a saturated drug solution
al of Pharmaceutics 418 (2011) 6– 12

at distance h from the surface and perfect sink conditions):

dM

dt
= A D

cs

h
(3)

Importantly, combining Eqs. (2) and (3) allows to obtain the
following expression for h:

h = 2

√
D t cs

2 cini − cs
(4)

Substituting Eq. (4) into Eq. (1) and simplifying leads to:

Mt

A
=
√

(2cini − cs)Dtcs (5)

For a high initial excess of drug (cini � cs), this equation can
further be simplified to:

Mt

A
=
√

2 ciniD cs t (6)

This is the classical Higuchi equation.
Obviously, one cannot violate the conditions on which Higuchi’s

derivation of his famous equation is based. In particular, the
pseudo-steady-state approach needs to be valid, requiring a high
initial excess of drug and a stationary “ointment–skin” interface (no
swelling, no ointment base dissolution).

Obviously, the classical Higuchi equation can also be used to
describe drug release from other controlled drug delivery systems
than ointment films, e.g., thin patches for transdermal drug deliv-
ery or thin films for oral drug delivery. In the latter case, generally
the two planar surfaces of the system are exposed to the release
medium, which is a stirred bulk fluid (instead of skin). The Higuchi
equation has later been extended to other geometries (e.g., Higuchi,
1963; Roseman and Higuchi, 1970). The reader is referred to the
article of Lee of this special issue for more details (Lee, this issue).

Note that Eq. (6) can also be written in the following, more
general form:

Mt = k
√

t (7)

with

k = A
√

2 ciniD cs (8)

Thus, the classical Higuchi equation describes a “square root of
time” release kinetics. However, it has to be pointed out that the
constant k has a very specific and physically realistic meaning in
the case of the Higuchi equation (Eq. (8)). Unfortunately, this is not
always taken into account and in some reports the classical Higuchi
equation is confused with other types of square root of time release
kinetics. It has to be highlighted that other types of controlled
drug delivery systems, which are governed by release mechanisms
different from those considered by Higuchi can also be character-
ized by a proportionality between the cumulative amount of drug
released and time. One example is described in the following.

3. Fickian diffusional release from a thin polymer sample

It is now instructive to consider also the simple derivation of a
general solution of the diffusion equation for transport and release
of drug from a one-dimensional object, in which the drug is initially
homogeneously distributed at a concentration below the maximum
solubility limit.

We  consider one-dimensional, isothermal drug transport and
diffusional release from a thin slab of a hydrophilic or hydrophobic
tially maintained at a constant uniform drug concentration c0, and
perfect sink conditions are provided at the surfaces. This situation
corresponds to the typical experimental conditions for a release
experiment. For an assumed constant drug diffusion coefficient D
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Table 1
Different forms of non-constant diffusion coefficients (the variables are defined in
the text).

Type of carrier Eq. Form of Dip

Porous 16 Dip = �2v
6

Porous 17 Deff = DiwKpKr
ε
�

Microporous 18
Dip
Db

= (1 − �)2(1 + ˛� + ˇ�3 + ��5)

Nonporous 19 Dip = Do exp
{

− k
vf

}
D

[ ( )( )]
J. Siepmann, N.A. Peppas / Internationa

ith one-dimensional diffusion in the x direction, Fick’s second law,
long with the appropriate initial and boundary conditions, may  be
ritten as:

∂c

∂t
= D

∂2c

∂x2
(9)

here

 = 0 − L/2  < x < L/2  c = c0 (10)

 > 0 x = ±L/2 c = 0 (11)

The solution to Fick’s law in the form of a trigonometric series
nder the above specified conditions is (Crank, 1975):

Mt

M∞
= 1 −

∞∑
n=0

8

(2n  + 1)2 · �2
· exp

(
− (2n + 1)2 · �2

L2
· D · t

)
(12)

here Mt is defined as the amount of drug released at time t, and
∞ is the amount of drug released as time approaches infinity. An

lternate solution to Eq. (12) that is useful for interpretation of short
ime behavior is given in the form of an error function series:

Mt

M∞
= 4
(

Dt

L2

)1/2
(

1
�1/2

+ 2
∞∑

n=1

(−1)nierfc
nL

2
√

Dt

)
(13)

here ierfc x represents the integrated complementary error func-
ion of x. For ‘small’ times, Eq. (13) can be approximated by:

Mt

M∞
= 4
(

Dt

�L2

)1/2
(14)

s indicated by Eq. (14), Fickian diffusion in a thin polymer sam-
le is characterized by an initial tl/2-time dependence of the drug
ransport. The short time approximation is valid for the first 60% of
he total drug release.

So, whether drug delivery is approached by the Higuchi equation
r by the simple release from a polymer film using pure Fickian
iffusion, the principal result is a tl/2-time dependence of the drug
ransport.

. Misunderstandings and misuse of the Higuchi and
elated equations

Several important assumptions have been implicitly incorpo-
ated in Eqs. (9)–(12).  First, these equations describe the release of

 drug from a carrier of a thin planar geometry, equivalent equa-
ions for release from thick slabs, cylinders, and spheres have been
erived (Baker, 1987). It should also be emphasized that in the
bove written form of Fick’s law the diffusion coefficient is assumed
o be independent of concentration. This assumption, while not
onceptually correct, has been largely accepted due to the com-
utational simplicity.

Initial and boundary conditions, which are necessary for solving
q. (9),  allow for the appropriate description of the experimental
onditions imposed upon the drug release device. The solutions of
q. (9) are subject to a number of boundary conditions that can be
pplied to various in vitro and ex vivo experiments.

In order to improve the predictive power of the Fickian diffu-
ion theory, a concentration dependent diffusion coefficient can be
sed in Fick’s law. The latter is then rewritten and solved with the
ppropriate boundary conditions:

∂ci ∂
(

∂ci

)

∂t

=
∂x

Dip(ci) ∂x
(15)

n Eq. (15), Dip(ci) is the concentration-dependent diffusion coef-
cient; its form of concentration dependence is affected by the
tructural characteristics of the polymer carrier.
Nonporous 20 2,13
D2,1

= ϕ(qs) exp −B qs
Vf,1

1
H − 1

Nonporous (highly swollen) 21
D2,13
D2,1

= k1

(
M̄c−M̄∗

c
M̄n−M̄∗

c

)
exp

(
− k2r2

s
Q−1

)

A selective summary of the various forms of the diffusion coef-
ficient is provided in Table 1.

One of the earliest approaches of estimating the diffusion coef-
ficient through a polymer carrier is that of Eyring (1936).  In this
theory, diffusion of a solute through a medium is presented as a
series of jumps instead of a continuous process. Therefore, in Eq.
(16) in Table 1, which comes from the Eyring analysis, � is the dif-
fusional jump of the drug in the polymer and v is the frequency of
jumping.

Fujita (1961) utilized the idea of free volume in polymers to
estimate the drug diffusion coefficient and arrived at an exponen-
tial dependence of the drug diffusion coefficient on the free volume,
uf, which is given by Eq. (19) in Table 1. Yasuda and Lamaze (1971)
refined the Fujita’s theory and presented a molecularly based the-
ory, which predicts the diffusion coefficients of drugs through a
polymer matrix rather accurately (Eq. (20)). In their treatment the
normalized diffusion coefficient, the ratio of the diffusion coeffi-
cient of the solute in the polymer, D2,13, to the diffusion coefficient
of the solute in the pure solvent, D2,1, is related to the degree of
hydration, H, and free-volume occupied by the swelling medium,
Vf,1. In addition, ϕ is a sieving factor which provides a limiting
mesh size impermeable to drugs with cross-sectional area qs, and
B is a parameter characteristic of the polymer. In Eq. (20), the sub-
scripts 1, 2 and 3 refer to the swelling medium, drug and polymer,
respectively.

Peppas and Reinhart (1983),  Reinhart and Peppas (1984) and
Peppas and Moynihan (1985) also developed a theoretical model
based on a free volume of the polymer matrix. In their theory they
assumed the free volume of the polymer to be the same as the
free volume of the solvent and they arrived at Eq. (21) in Table 1.
They related the normalized diffusion coefficient to the degree
of swelling, Q, the solute radius, rs, and the molecular weight of
the polymer chains. More specifically, M̄c is the average molec-
ular weight of the polymer chains between adjacent crosslinks
(Fig. 3), M̄n is the average molecular weight of the linear poly-
mer  chains prepared under identical conditions in the absence
of the crosslinking agent, and M̄∗

c is the critical molecular weight
between crosslinks below which a drug of size rs could not diffuse
through the polymer network. In addition, k1 and k2 are constants
related to the polymer structure. This theory is applicable to drug
transport in highly swollen, nonporous hydrogels. Equations for
moderately or poorly swollen (Peppas and Moynihan, 1985) and
semi-crystalline hydrogels (Harland and Peppas, 1989) were also
developed.

Yet, another approach for the prediction of the diffusion coef-
ficient of a drug in a controlled-release device has been adopted
from the chemical engineering field. More specifically, the trans-

port phenomena in porous rocks, ion-exchange resins, and catalysis
are of very similar nature to a drug diffusing through a macro- or
micro-porous polymer. In these types of polymers the diffusion is
assumed to be taking place predominantly through the water, or
body fluid filled pores. The diffusion coefficient of a drug in a poly-
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er, Dip, in Eq. (15) is replaced by an effective diffusive coefficient,
eff, which is defined by Eq. (17) in Table 1. In Eq. (17), ε is the
orosity, or void fraction, of the polymer, which is a measure of
he volume of the pores available for diffusion and � is the tortu-
sity, which describes the geometric characteristics of the pores.
he term Kp is the equilibrium-partitioning coefficient, which is a
arameter, needed when the drug is soluble in the polymer matrix,

t is the ratio of the concentration inside of the pore to the con-
entration outside of the pore. The term Kr describes the fractional
eduction in diffusivity within the pore when the solute diame-
er, ds, is comparable in size to the pore diameter dr. Eq. (18) in
able 1 is a semi-empirical relation proposed by Faxen (1923) for
iffusion of spheres through porous media. In this equation, � is
he ratio of the drug radius, rs, to the pore average radius, rp, Dip
nd Db are the diffusion coefficients of the sphere through the
ore and in bulk, respectively; and ˛,  ̌ and � are constants. It is
lear to see that as the size of the drug gets smaller with respect
o the size of the pore, the ratio of Dip/Db approaches the limit of
ne.

Over the past fifty years these equations have been used incor-
ectly to analyze drug transport, especially from tablets. Some of
he common errors are

1) Use of the equation with a constant diffusion coefficient when
the drug delivery formulation is actually expanding due to
swelling or contracting due significant dissolution and release
of drug with associated pore formation and collapse of the pores
created during the release.

2) Use of a one-dimensional equation for release from three-
dimensional formulations (such as tablets).

3) Lack of appreciation of the importance of the lateral area of
diffusion (especially for tablets) and treatment of the problem

as a one-dimensional problem.

4) While a formulation is swelling or dissolving, the equation used
is one developed with stationary boundary conditions.

5) Certain contributions ignore the importance of other compo-
nents (e.g., fillers, disintegrants) and treat the drug delivery
e of a drug. The average molecular weight of the polymer chains between adjacent

process as a one-component diffusion process when in reality
it is a multi-component diffusional process.

An example for a system, which is highly unusual for appli-
cation of Higuchi’s law is illustrated in Fig. 4: Hydroxypropyl
methylcellulose-based tablets containing diltiazem, which are par-
tially coated with an impermeable layer [case 0 (square), case 1
(filled diamond), case 2 (open square), case 3 (open diamond), case
4 (filled square)]. The significant swelling of these systems along
with the impermeable coating layers renders the tablets very spe-
cific and deviate from the Higuchi assumptions.

5. Drug delivery from swellable systems

Transport from swellable systems may  often lead to release
under conditions that do not agree with Higuchi’s or the Fickian
behavior (Korsmeyer et al., 1986a,b; Davidson and Peppas, 1986a,b;
Peppas and Korsmeyer, 1987; Lustig and Peppas, 1987; Klier and
Peppas, 1988). For example, a simple semi-empirical equation used
to define water transport in glassy polymers has been proposed
by us (Sinclair and Peppas, 1984). The same equation was further
developed to analyze drug release from films that had both a diffu-
sional and a relaxational component.

For Fickian diffusional release from a thin film, Eq. (14) above
indicates that the first 60% of the normalized drug release at any
time can be characterized by some constant multiplied by the
square root of time. For the second limiting case, Case II water trans-
port and relaxational swelling of a sample, the normalized water
uptake at any time is linearly related to time. Most transport pro-
cesses in glassy polymers fall between these two limiting cases; as
such, they can be represented by a coupling of the Fickian and Case
II transport mechanisms. A simple expression of this observation

can be heuristically written by adding the diffusion-controlled and
relaxation-controlled drug delivery:

Mt

M∞
= k1

√
t + k2t (22)
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Fig. 4. Drug release behavior cannot always be fitted to Higuchi’s law, when var-
ious defining conditions are violated. Here the fractional diltiazem release from
hydroxypropyl methylcellulose-based tablets is presented versus the square root
of  release time. The significant swelling of these systems along with the deliberate
partial coating of surfaces of the tablet make this system highly unusual for appli-
cation of Higuchi’s law. The open squares with a dot represent drug release from
uncoated tablets (case 0), the filled diamonds represent drug release from tablets
with one of the bases coated (case 1), the open squares represent drug release from
tablets with both bases coated (case 2), the open diamonds represent drug release
f
d
4
R

w
w

Table 2
Exponent n of the Peppas equation and drug release mechanism from polymeric
controlled delivery system for different geometries.

Thin film Cylinder Sphere Drug release mechanism

Exponent, n

Davidson, G.W.R., Peppas, N.A., 1985. Relaxational effects in solute transport and
rom tablets with the lateral surface coated (case 3), the filled squares represent
rug release from tablets with the lateral surface and one of the bases coated (case
).
eprinted with permission from Colombo et al. (1992).

here k1 and k2 are constants. A generalized expression can be

ritten as:

Mt

M∞
= ktn (23)
0.5 0.45 0.43 Fickian diffusion
0.5 < n < 1.0 0.45 < n < 0.89 0.43 < n < 0.85 Anomalous transport
1.0  0.89 0.85 Case-II transport

where k is a constant incorporating characteristics of the
macromolecular network or particle system that makes up the
formulation, and n is the diffusional exponent which is indica-
tive of the transport mechanism. This power law has first been
introduced in the pharmaceutical field in 1985 (Peppas, 1985)
and has become known as the “Peppas equation”. It is valid for
the first 60% of the normalized drug release. In the case of thin
films with negligible edge effects, Fickian drug diffusion and relax-
ational drug transport are defined by n equal to l/2 and n equal to
1, respectively. Anomalous drug transport behavior is intermedi-
ate between Fickian and Case II; this is reflected by the fact that
anomalous behavior is defined by values of n between l/2 and 1.
For other geometries, different n-values are indicative for diffu-
sion or polymer relaxation controlled drug release, as shown in
Table 2.

In recent years, we have seen an explosion in the preparation
and utilization of swellable controlled release systems from simple
nasal, buccal and rectal administration applications to more com-
plex bioadhesive uses. Whether in the form of microspheres, discs
or the more conventional tablets, such systems have now found
applications in various fields. Swellable tablets and related systems
continue being of commercial interest. Several recent studies have
been reported where the releasing area of these systems has been
modified in order to achieve a desirable release rate. Prediction of
release rates from such systems requires expressions of the Fick-
ian or non-Fickian penetrant transport by an appropriate equation,
and similar expression of the drug diffusion. In both cases, the prob-
lem must be solved in a three-dimensional form with appropriate
initial and boundary conditions. This requires extensive numerical
solutions as shown, for example, by Ritger and Peppas (1987b) or
Lustig and Peppas (1989).

6. Conclusions

The classical Higuchi equation had a tremendous impact in the
field of advanced drug delivery and still affects the work of numer-
ous research groups all over the world. Takeru Higuchi can be seen
as the “father” for a mechanistic understanding of controlled drug
delivery systems. His equation allows for a very easy calculation
of drug release from a rather complex type of system. However,
caution should be paid not to violate any of the conditions, the
derivation of this equation is based on.

References

Baker, R., 1987. Controlled Release of Biologically Active Agents. John Wiley & Sons,
New York.

Colombo, P., Catellani, P.L., Peppas, N.A., Maggi, L., Conte, U., 1992. Swelling char-
acteristics of hydrophilic matrices for controlled release: new dimensionless
number to describe the swelling and release behavior. Int. J. Pharm. 88, 99–109.

Crank, J., 1975. The Mathematics of Diffusion. Clarendon Press, Oxford.
Davidson, G.W.R., Peppas, N.A., 1984. The swelling interface number as a criterion

for  zero-order release. Proc. Symp. Control. Release Bioact. Mater. 11, 102–103.
release from swelling-controlled p(HEMA-co-MMA) systems. Proc. Symp. Con-
trol. Release Bioact. Mater. 12, 25–27.

Davidson, G.W.R., Peppas, N.A., 1986a. Solute and penetrant diffusion in swellable
polymers. V. Relaxation-controlled transport in p(HEMA-co-MMA) copolymers.
J.  Control. Release 3, 243–258.



1 l Journ

D

E
F

F
F

F

G

G

H

H

H

H

H

K

K

K

K

K

K

K

L

L

L

L

L

P

P

2 J. Siepmann, N.A. Peppas / Internationa

avidson, G.W.R., Peppas, N.A., 1986b. Solute and penetrant diffusion in swellable
polymers. VI. The Deborah and swelling interface numbers as indicators of the
order of biomolecular release. J. Control. Release 3, 259–271.

yring, H., 1936. Theory of rate processes. J. Chem. Phys. 4, 283–289.
axen, H., 1923. Die Bewegung einer starren Kugel laengs der Achse eines mit  zaeher

Flussigkeit gefuellten Rohres. Arch. Mater. Astronom. Fys. 17, 27.
ick, A., 1855. Ueber diffusion. Poggendorf’s Annalen der Physik 94, 59–86.
ranson, N.M., Peppas, N.A., 1983. Release of drugs from initially glassy, dynamically

swelling p(HEMA-co-MMA) copolymers. Polym. Prep. 24, 53–54.
ujita, H., 1961. Diffusion in polymer-diluent systems. Fortschr. Hochpolym. –

Forsch. 3, 1–47.
urny, R., Doelker, E., Peppas, N.A., 1982. Modelling of sustained release of water-

soluble drugs from porous, hydrophobic polymers. Biomaterials 3, 27–32.
urny, R., Doelker, E., Buri, P.A., Korsmeyer, R.W., Peppas, N.A., 1983. Nouvelles

observations sur le mécanisme de libération d’un solute à partir de polymères
hydrophiles. In: Proceed. Congress Intern. Pharmac. Technol. APGI, vol. 3 , pp.
97–105.

arland, R.S., Gazzaniga, A., Sangalli, M.E., Colombo, P., Peppas, N.A., 1988a.
Drug/polymer matrix swelling and dissolution. Pharm. Res. 5, 488–494.

arland, R.S., Dubernet, C., Benoit, J.P., Peppas, N.A., 1988b. A model of dissolution-
controlled diffusional drug release from non-swellable polymeric microspheres.
J.  Control. Release 7, 207–215.

arland, R.S., Peppas, N.A., 1989. Solute diffusion in swollen membranes. VII. Diffu-
sion in semicrystalline networks. Colloid Polym. Sci. 267, 218.

iguchi, T., 1961. Rate of release of medicaments from ointment bases containing
drugs in suspensions. J. Pharm. Sci. 50, 874–875.

iguchi, T., 1963. Mechanisms of sustained action mediation. Theoretical analysis
of  rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 52,
1145–1149.

lier, J., Peppas, N.A., 1988. Solute and penetrant diffusion in swellable polymers.
VIII.  Influence of the swelling interface number on solute concentration profiles
and release. J. Control. Release 7, 61–68.

orsmeyer, R.W., Rave, T.L., Peppas, N.A., Gurny, R., Doelker, E., Buri, P.A., 1982.
Swelling controlled release systems: progress toward zero-order kinetics with
polymer blends. Proc. Symp. Control. Release Bioact. Mater. 9, 65–68.

orsmeyer, R.W., Peppas, N.A., 1983a. Macromolecular and modeling aspects of
swelling-controlled systems. In: Roseman, T.J., Mansdorf, S.Z. (Eds.), Controlled
Release Delivery Systems. Dekker, New York, pp. 77–90.

orsmeyer, R.W., Peppas, N.A., 1983b. Modeling drug release from swellable sys-
tems. Proc. Symp. Control. Release Bioact. Mater. 10, 141–144.

orsmeyer, R.W., Gurny, R., Doelker, E., Buri, P.A., Peppas, N.A., 1983. Mechanisms
of  solute release from porous hydrophilic polymers. Int. J. Pharm. 15, 25–35.

orsmeyer, R.W., Lustig, S.R., Peppas, N.A., 1986a. Solute and penetrant diffusion in
swellable polymers. I. Mathematical modeling. J. Polym. Sci. Polym. Phys. 24,
395–408.

orsmeyer, R.W., Meerwall, E.D., von Peppas, N.A., 1986b. Solute and penetrant dif-
fusion in swellable polymers. II. Verification of theoretical models. J. Polym. Sci.
Polym. Phys. 24, 409–434.

ee, P. Modeling of drug release from matrix systems involving moving
boundaries: approximate analytical solutions. Int. J. Pharm., this issue,
doi:10.1016/j.ijpharm.2011.01.019.

ustig, S.R., Peppas, N.A., 1984. Scaling concepts in controlled release. Proc. Symp.
Control. Release Bioact. Mater. 11, 104–105.

ustig, S.R., Peppas, N.A., 1985. The mathematics and physics of solute transport
in  continuously swelling hydrophilic polymers. Proc. Symp. Control. Release
Bioact. Mater. 12, 30–31.

ustig, S.R., Peppas, N.A., 1987. Solute and penetrant diffusion in swellable polymers.
VII. A free-volume-based model with mechanical relaxation. J. Appl. Polym. Sci.
33, 533–549.

ustig, S.R., Peppas, N.A., 1989. Recent advances in modeling of swelling-controlled

release systems. Proc. Int. Symp. Control. Release Bioact. Mater. 16, 167–168.

eppas, N.A., 1983. A model of dissolution-controlled solute release from porous
drug-delivery polymeric systems. J. Biomed. Mater. Res. 17, 1079–1087.

eppas, N.A., Franson, N.M., 1983. The swelling interface number as a criterion for
prediction of diffusional solute release mechanisms in swellable polymers. J.
Polym. Sci. Polym. Phys. 21, 983–997.
al of Pharmaceutics 418 (2011) 6– 12

Peppas, N.A., Gurny, R., 1983. Relation entre la structure des polymères et la libéra-
tion contrôlée de principes actifs. Pharm. Acta Helv. 58, 2–8.

Peppas, N.A., Reinhart, C.T., 1983. Solute diffusion in swollen membranes. I. A new
theory. J. Membr. Sci. 15, 275–287.

Peppas, N.A., 1984a. Mathematical modelling of diffusion processes in drug delivery
polymeric systems. In: Smolen, V.F., Ball, L.A. (Eds.), Controlled Drug Bioavail-
ability, vol. 1. Drug Product Design and Performance. Wiley, New York, pp.
203–237.

Peppas, N.A., 1984b. Mathematical models for controlled release kinetics. In: Langer,
R.S., Wise, D. (Eds.), Medical Applications of Controlled Release Technology, vol.
2.  CRC Press, Boca Raton, Florida, pp. 169–187.

Peppas, N.A., 1984c. Release of bioactive agents from swellable polymers: theory
and  experiments. In: Anderson, J.M., Kim, S.W. (Eds.), Recent Advances in Drug
Delivery Systems. Plenum Press, New York, pp. 279–290.

Peppas, N.A., 1984d. Modelling of drug release from porous polymers. Proc. Symp.
Control. Release Bioact. Mater. 11, 94–96.

Peppas, N.A., Sinclair, J.L., Smith, M.J., Mounts, J.G., 1984. Relaxation-controlled
transport of penetrants in glassy polymers. In: Mena, B., Garcia-Rejon, A., Rangel-
Nafaile, C. (Eds.), Advances in Rheology. vol. 3, Polymers. U.N.A.M, Mexico City,
pp.  209–214.

Peppas, N.A., 1985. Analysis of Fickian and non-Fickian drug release from polymers.
Pharm. Acta Helv. 60, 110–111.

Peppas, N.A., Lustig, S.R., 1985. The role of crosslinks, entanglements and relax-
ations of the macromolecular carrier in the diffusional release of biologically
active materials: conceptual and scaling relationships. Ann. N. Y. Acad. Sci. 446,
26–41.

Peppas, N.A., Moynihan, H.J., 1985. Solute diffusion in swollen membranes. IV. The-
ories for moderately swollen networks. J. Appl. Polym. Sci. 30, 2589.

Peppas, N.A., Segot-Chicq, S., 1985. Les dispositifs à libération contrôlée pour la
délivrance des principes actifs médicamenteux. III. Modélisation des mécan-
ismes diffusionnels. STP-Pharma 1, 208–216.

Peppas, N.A., 1987. Swelling controlled release systems: recent developments and
applications. In: Mueller, B.W. (Ed.), Controlled Drug Delivery. Wissenschaftliche
Verlagsgesellschaft, Stuttgart, pp. 160–173.

Peppas, N.A., Korsmeyer, R.W., 1987. Dynamically swelling hydrogels in controlled
release applications. In: Peppas, N.A. (Ed.), Hydrogels in Medicine and Pharmacy,
vol. 3. Properties and Applications. CRC Press, Boca Raton, FL, pp. 109–136.

Peppas, N.A., Sahlin, J.J., 1989. A simple equation for the description of solute release.
III.  Coupling of diffusion and relaxation. Int. J. Pharm. 57, 169–172.

Reinhart, C.T., Peppas, N.A., 1984. Solute diffusion in swollen membranes. II. Influ-
ence of crosslinking on diffusive properties. J. Membr. Sci. 18, 227–239.

Ritger, P.L., Peppas, N.A., 1987a. A simple equation for description of solute release. I.
Fickian and non-Fickian release from non-swellable devices in the form of slabs,
spheres, cylinders or discs. J. Control. Release 5, 23–36.

Ritger, P.L., Peppas, N.A., 1987b. A simple equation for description of solute release.
II.  Fickian and anomalous release from swellable devices. J. Control. Release 5,
37–42.

Roseman, T.J., Higuchi, W.I., 1970. Release of medroxyprogesterone acetate from a
silicone polymer. J. Pharm. Sci. 59, 353–357.

Siepmann, J., Peppas, N.A., 2000. Hydrophilic matrices for controlled drug delivery:
an improved mathematical model to predict the resulting drug release kinetics
(the “sequential layer” model). Pharm. Res. 17, 1290–1298.

Siepmann, J., Goepferich, A., 2001. Mathematical modeling of bioerodible, polymeric
drug delivery systems. Adv. Drug Deliv. Rev. 48, 229–247.

Siepmann, J., Peppas, N.A., 2001. Modeling of drug release from delivery systems
based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 48,
139–157.

Siepmann, J., Siepmann, F., Florence, A.T., 2006. Local controlled drug delivery to the
brain: mathematical modeling of the underlying mass transport mechanisms.
Int.  J. Pharm. 314, 101–119.
Siepmann, J., Siepmann, F., 2008. Mathematical modeling of drug delivery. Int. J.
Pharm. 364, 328–343.

Sinclair, G.W., Peppas, N.A., 1984. Analysis of non-Fickian transport in polymers
using simplified exponential expressions. J. Membr. Sci. 17, 329–331.

Yasuda, H., Lamaze, C.E., 1971. Permselectivity of solutes in homogeneous water-
swollen polymer membranes. J. Macromol. Sci. Phys. B5, 111–134.

http://dx.doi.org/10.1016/j.ijpharm.2011.01.019

	Higuchi equation: Derivation, applications, use and misuse
	1 Introduction
	2 Derivation of the Higuchi equation
	3 Fickian diffusional release from a thin polymer sample
	4 Misunderstandings and misuse of the Higuchi and related equations
	5 Drug delivery from swellable systems
	6 Conclusions
	References


